Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cell Res ; 32(4): 375-382, 2022 04.
Article in English | MEDLINE | ID: covidwho-1707327

ABSTRACT

Monoclonal antibodies represent important weapons in our arsenal to against the COVID-19 pandemic. However, this potential is severely limited by the time-consuming process of developing effective antibodies and the relative high cost of manufacturing. Herein, we present a rapid and cost-effective lipid nanoparticle (LNP) encapsulated-mRNA platform for in vivo delivery of SARS-CoV-2 neutralization antibodies. Two mRNAs encoding the light and heavy chains of a potent SARS-CoV-2 neutralizing antibody HB27, which is currently being evaluated in clinical trials, were encapsulated into clinical grade LNP formulations (named as mRNA-HB27-LNP). In vivo characterization demonstrated that intravenous administration of mRNA-HB27-LNP in mice resulted in a longer circulating half-life compared with the original HB27 antibody in protein format. More importantly, a single prophylactic administration of mRNA-HB27-LNP provided protection against SARS-CoV-2 challenge in mice at 1, 7 and even 63 days post administration. In a close contact transmission model, prophylactic administration of mRNA-HB27-LNP prevented SARS-CoV-2 infection between hamsters in a dose-dependent manner. Overall, our results demonstrate a superior long-term protection against SARS-CoV-2 conferred by a single administration of this unique mRNA antibody, highlighting the potential of this universal platform for antibody-based disease prevention and therapy against COVID-19 as well as a variety of other infectious diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/prevention & control , Cricetinae , Humans , Liposomes , Mice , Nanoparticles , Pandemics/prevention & control , RNA, Messenger/genetics , Spike Glycoprotein, Coronavirus
2.
J Int Med Res ; 48(12): 300060520979151, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-978869

ABSTRACT

OBJECTIVE: Association of angiotensin-converting enzyme inhibitors (ACEI) or angiotensin receptor blockers (ARB) use with coronavirus disease 2019 (COVID-19) remains controversial. We aimed to investigate the impact of ACEI/ARB use on all-cause mortality in severe COVID-19 patients with hypertension. METHODS: We enrolled 650 COVID-19 patients from Changsha and Wuhan city between 17 January 2020 and 8 March 2020. Demographic, clinical characteristics, and outcomes were collected. Multivariable analysis and propensity-score matching were performed to assess the impact of ACEI/ARB therapy on mortality. RESULTS: Among the 650 patients, 126 who had severe COVID-19 concomitant with hypertension were analyzed. The average age was 66 years and 56 (44.4%) were men. There were 37 ACEI/ARB users and 21 in-hospital deaths (mortality rate, 16.7%). Male sex (odds ratio [OR], 5.13; 95% confidence interval [CI], 1.75 to 17.8), but not ACEI/ARB use (OR, 1.09; 95%CI, 0.31 to 3.43), was an independent risk factor for mortality in severe COVID-19 patients with hypertension. After propensity-score matching, 60 severe COVID-19 patients were included and no significant correlation between use of ACEI/ARB and mortality was observed. CONCLUSIONS: There was no significant association of ACEI/ARB use with mortality in severe COVID-19 patients with hypertension. These findings support the continuation of ACEI/ARB therapy for such patients.


Subject(s)
Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , COVID-19/mortality , Hypertension/drug therapy , Aged , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/diagnosis , COVID-19/virology , Female , Gene Expression Regulation/drug effects , Hospital Mortality , Humans , Hypertension/complications , Male , Pandemics , Renin-Angiotensin System/drug effects , Retrospective Studies , Risk Factors , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Severity of Illness Index , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
3.
Cell ; 182(5): 1271-1283.e16, 2020 09 03.
Article in English | MEDLINE | ID: covidwho-666099

ABSTRACT

There is an urgent need for vaccines against coronavirus disease 2019 (COVID-19) because of the ongoing SARS-CoV-2 pandemic. Among all approaches, a messenger RNA (mRNA)-based vaccine has emerged as a rapid and versatile platform to quickly respond to this challenge. Here, we developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor binding domain (RBD) of SARS-CoV-2 as a vaccine candidate (called ARCoV). Intramuscular immunization of ARCoV mRNA-LNP elicited robust neutralizing antibodies against SARS-CoV-2 as well as a Th1-biased cellular response in mice and non-human primates. Two doses of ARCoV immunization in mice conferred complete protection against the challenge of a SARS-CoV-2 mouse-adapted strain. Additionally, ARCoV is manufactured as a liquid formulation and can be stored at room temperature for at least 1 week. ARCoV is currently being evaluated in phase 1 clinical trials.


Subject(s)
RNA, Messenger/genetics , RNA, Viral/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Female , HEK293 Cells , HeLa Cells , Humans , Immunogenicity, Vaccine , Injections, Intramuscular , Macaca fascicularis , Male , Mice , Mice, Inbred ICR , Nanoparticles/chemistry , RNA, Messenger/metabolism , RNA, Viral/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Th1 Cells/immunology , Vaccine Potency , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vero Cells , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL